
 Lab 9
Objectives
• Extending Binary Trees to make Binary Search Trees

• Practice with extending a class and overriding methods

Part I – Extending BinaryTree
In	this	lab	you	will	implement	the	ArrayBasedBinarySearchTree.java and
RefBasedBinarySearchTree.java	that	will	extend	the	ArrayBasedBinaryTree.java and
RefBasedBinaryTree.java respectively	(as	shown	in	the	UML).	
	

	
	
RECALL:	A	Binary	Search	Tree	maintains	the	invariant	that	for	every	element	in	the	tree,	every	element	in	
its	left	subtree	must	be	smaller	than	the	parent	and	every	element	in	its	right	subtree	must	be	larger	than	
the	parent	

1. Download	all	the	files	provided	to	you	in	this	lab	to	your	Lab9	folder.		
2. You	will	be	implementing	the	necessary	methods	in	ArrayBasedBinarySearchTree.java that	

extends	ArrayBasedBinarySearchTree.java 	
3. Understand	which	methods	ArrayBasedBinarySearchTree	will	inherit	from	the	super	class	
4. Implement	the	required	methods	that	you	will	override	from	the	super	class	(insertion	will	be	much	

different	as	the	insert	must	maintain	the	invariant	of	the	Binary	Search	Tree).			Implement	two	versions	
of	the	insert	function:	an	iterative	version	and	then	a	recursive	version	

5. Look	at	the	main	method.		Hand	draw	what	the	tree	will	look	like	after	the	calls	to	insert in	the	
main	and	write	out	the	expected	in-order,	pre-order	and	post-order	traversals.		

6. Compile	and	run	and	compare	the	output	with	your	expected	results	from	Step	5.	

CHECK	POINT	–	get	your	lab	TA	to	check	off	after	you	have	completed		this.		They	will	want	to	see	the	
methods	you	implemented	in	ArrayBasedBinarySearchTree and	see	you	run	the	main	in	each.	

7. Repeat	steps	3-6	for	RefBasedBinarySearchTree.java	

CHECK	POINT	–	get	your	lab	TA	to	check	off	after	you	have	completed		this.		They	will	want	to	see	the	
methods	you	implemented	in	RefBasedBinarySearchTree and	see	you	run	the	main	in	each.	
	

Part II – Adding functionality
In	this	part	of	the	lab	you	will	be	adding	functionality	to	RefBasedBinaryTree.java and	
RefBasedBinarySearchTree.java		
	
For	each	method	description	below	do	the	following:	

1. Implement	and	test	the	method	in	RefBasedBinaryTree.java	
2. Determine	whether	RefBasedBinarySearchTree.java	should	inherit	the	implementation	from	

RefBasedBinaryTree.java or	if	it	should	override	it.		Ask	yourself,	will	the	algorithm	be	different	
given	the	constraints	of	a	Binary	Search	Tree	

3. If	you	determined	you	should	implement	the	method	in	RefBasedBinarySearchTree.java,	
implement	two	versions	of	that	method:	an	iterative	version	and	then	a	recursive	version	

	
 /*
 * Method name: sum
 * Purpose: computes the sum of all elements in this BinaryTree
 * Parameters: none
 * Returns: int – the sum
 */

 /*
 * Method name: find
 * Purpose: determines whether val is in this BinaryTree
 * Parameters: int val
 * Returns: boolean – true if val is found, false otherwise
 */

 /*
 * Method name: getMax
 * Purpose: gets and returns the largest value in this BinaryTree
 * Parameters: none
 * Throws: TreeEmptyException if called on an empty tree
 * Returns: int – the largest value
 */

 /*
 * Method name: levelOrder
 * Purpose: prints all values in this BinaryTree in a level order
 * Parameters: none
 * Returns: nothing
 */

CHECK	POINT	–	get	your	lab	TA	to	check	off	after	you	have	completed	this.		They	will	want	to	see	the	
methods	you	implemented	and	see	you	run	tests	in	the	main	for	each.	

