
 1

char	arrays,	strings	and	string.h	
1. Recall, a char array can be initialized with a string literal (characters enclosed in " ")

Recall the format specifiers: %s to print a null terminated string, %c to print a char, %d to print an integer.
Consider the following code segments.

a. Given the following declaration, draw the array that represents str_0. Indicate garbage data with a –

 char str_0[5];

0 1 2 3 4

– – – – –

b. Given the following declaration, draw the array that represents str_1. Indicate garbage data with a –
What is the output of the print statement?

 char str_1[5] = "Hi";
 printf("str_1: %s\n", str_1);

0 1 2 3 4

'H' 'i' '\0' '\0' '\0'

c. Given the following declaration and assignments, draw the array that represents str_2 and str_3.
Indicate garbage data with a –
What is the output of the print statements?

 char str_2[5] = "HiHi!";
 char str_3[5] = "Bye";
 printf("str_2: %s\n", str_2); // output: HiHi!Bye
 printf("str_3: %s\n", str_3); // output: Bye

0 1 2 3 4

'H' 'i' 'H' 'i' '!'

0 1 2 3 4

'B' 'y' 'e' '\0' '\0'

Update your drawing to reflect the following change. What is the output of the print statements?
 str_2[2] = '\0';
 printf("str_2: %s\n", str_2); // output: Hi
 printf("str_3: %s\n", str_3); // output: Bye

only str_2 changes:

0 1 2 3 4

'H' 'i' '\0' 'i' '!'

 2

2. Complete the string_length function that takes a character array containing a null terminated string.
The function should return the length of that string (ie. the number of characters in the array before the null
terminator). Add calls to complete the testing in the main that has been started for you.

 int string_length(char str[]);

int main() {
 char str_mt[] = "";
 char str_not_full[10] = "Hello!!";
 char str_full[6] = "Hello";
 int len = 0;

 // test empty string:
 len = string_length(str_mt);
 printf("length should be 0: %d\n", len);

 // test not full array:
 len = string_length(str_not_full);
 printf("length should be 7: %d\n", len);

 // test full array:
 len = string_length(str_full);
 printf("length should be 5: %d\n", len);
}

/*
 * Purpose: count characters in src upto but not including
 * the null terminator.
 * Parameters: char src[], a null terminated string
 * Returns: int, the count of characters
 */
int string_length(char src[]) {
 int index = 0;
 while(src[index] != '\0') {
 index++;
 }
 return index;
}

//alternative solution:
int string_length(char src[]) {
 int count = 0;
 while(*src != '\0') {
 src++;
 count++;
 }
 return count;
}

 3

3. Design and test a function called string_copy that takes 2 character arrays, the first being the destination
and the second being the source array that is a null terminated string. The function should copy the characters
from the source array to the destination array up to and including the null terminator.

/* Purpose: copies characters from src to dest, stores
 * a null terminator in dest following all characters from src
 * Params: char dest[] - array with capacity >= length of src +1
 * char src[] - a null terminated string
 */
void string_copy(char dest[], char src[]) {
 int index = 0;
 while(src[index] != '\0') {
 dest[index] = src[index];
 index++;
 }
 dest[index] = '\0';
}

//alternate solution:
void string_copy(char dest[], char src[]) {
 while(*src != '\0') {
 *dest++ = *src++;
 }
 *dest = '\0';
}

 4

4. Design and test a function called string_reverse that takes a char array which is a null terminated string
and reverses the order of the characters in the string.

/* Purpose: reverses the order of characters in str
 * Params: char src[] - a null terminated string
 * Assumes MAX_SIZE is defined to be large enough to hold
 * the maximum string size + null terminator
 */
void string_reverse(char src[]) {
 int len = strlen (src);
 char temp_array[MAX_SIZE];

 int src_front = 0;
 int temp_back = len-1;

 temp_array[len] = '\0';
 while(src[src_front] != '\0') {
 temp_array[temp_back] = src[src_front];
 src_front++;
 temp_back--;
 }

 strcpy(src, temp_array);
}

//alternate solution:
void string_reverse(char src[]) {
 int len = strlen(src);
 char temp;

 int front_index = 0;
 int back_index = len- 1;

 while(front_index <= back_index) {
 temp = src[back_index];
 src[back_index] = src[front_index];
 src[front_index] = temp;
 front_index++;
 back_index--;
 }
}

 5

5. Design and test a function called string_append that takes 2 character arrays, the first being the
destination and the second being the source array which are both null terminated strings. The function should
copy the characters from the source to destination array starting at the position of the null terminator in the
destination, up to and including the null terminator in the source. The destination array is guaranteed to be
large enough to hold the appended strings and a null terminator at the end.

/* Purpose: copies characters from src to end of dest
 * stores a null terminator in dest after all characters from src
 * Params: char dest[] - a null terminated string with
 * capacity >= (length of dest + length of src +1)
 * char src[] - a null terminated string
 */
void string_append(char dest[], char src[]) {
 int len = strlen(dest);
 int src_index = 0;
 int dest_index = len;
 while(src[src_index] != '\0') {
 dest[dest_index++] = src[src_index++];
 }
 dest[dest_index] = '\0';
}

 6

6. The following function prototypes/documentation are part of the C Library specified in string.h
Their behavior should look familiar given the functions you have just written.

char *strcpy(char *dest, const char *src)
Copies characters from the string pointed to, by src to dest including the
terminating null character. Assumes dest is big enough to hold characters in src +
terminating null character.

char *strcat(char *dest, const char *src)
Appends the string pointed to by src to the end of the string pointed to by dest.

int strlen (const char *src)
Computes the length of the string str up to, but not including the terminating null
character.

Design a function that takes a string and makes a copy of that string, reverses the copy and appends the
reversed string to the original string. Use the built-in functions from string.h. Your function can assume
that the size of the input array that holds the characters of the original string is large enough to accommodate
the appended strings. The original string should not be changed.

/* Purpose: copies src to dest and then appends the reverse of src to dest
 * Params: char dest[] - a null terminated string with
 * capacity >= (2 *length of src +1)
 * Assumes MAX_SIZE is defined to be large enough to hold
 * the maximum string size + null terminator
 * char src[] - a null terminated string
 */
void strcat_rev(char dest[], char src[]) {
 char rev[MAX_SIZE];

 strcpy(rev, src);
 string_reverse(rev);
 strcpy(dest, src);
 strcat(dest, rev);
}

