Introduction to pointer types

1. Assume that the following valid variable declarations have been made:
int a = 4;
int b = 8;
double d = 2.1;
int* ptrl;
int* ptr2
int** ptr3;

For each expression, if it is valid, identify the type the expression evaluates to otherwise mark it as invalid:

type

&ay

*a;

ptrl;

*ptrl;

*ptrl + *ptr2;

*ptr2 + d;

ptr3;

&ptrl;

&ptr3;

**ptr3;

*ptr3;

*ptrl + 10;

**ptr2;

&ptr2;

**ptr3 + *ptrl;

ptrl + 1;

2.

Assume that the following valid variable declarations have been made:

int a = 4;

int b = 8;
double d = 2.1;
int* ptrl;

int* ptr2

int** ptr3;

For each of the following assignment statements, indicate the type of the variable on the left hand side (LHS) of
the assignment operator (=), the type the expression on the right hand side (RHS) of the assignment operator
evaluates to and whether the assignment is valid. To be valid, the type on the LHS must = the type on the RHS.

*ptr2 = &b;

a = **ptr3 + 5;

**ptr3 = **ptr3 + *ptrl;

ptr3 = &a;
ptr3 = &ptr2;
ptr2 = &a;

*ptr3 = ptrl;

ptrl = &d;

d = *ptrl + **ptr3;

*ptrl = **ptr3 + d;

Type LHS

Type RHS

Valid?

3. Assume that the following valid variable declarations have been made:
int a = 4;
int b = 8;
double d = 2.1;
int* ptrl;
int* ptr2
int** ptr3;

Assume that the following valid statements are executed one after another in the given sequence. Update the
values of the variables that change after each statement has executed in the trace table provided for you.
TIP: Draw a trace diagram to help you keep track

a b
4 8
ptrl = &a;
ptr2 = &b;
ptr3 = &ptr2;
*ptrl = 5;

**ptr3 = 10;

*ptr3 ptrl;

*ptr2 = 12;

**ptr3 = *ptr2 + **ptr3;

b = 20;

ptrl = &b;

ptr3 &ptrl;

a = (*ptrl)++; //postfix!

ptr2 = *ptr3;

*ptr2 = 1;

ptr2 = &a;

*ptr2 = (**ptr3)++;

a = ++ (*ptrl);

**ptr3 = 50;

4. Consider the program below.
#include <stdio.h>
void foo (int* x, int** y);
int main(void) {
int a = 10;
int b = 11;
int *c;

int **d;

c = &b;
d = &c;

foo(a,b);
printf ("a: %d, b: $d\n", a, b);

foo(&a, &b);
printf ("a: %d, b: %d\n", a, b);

foo(&a, &c);
printf ("a: %d, b: %d\n", a, b);

foo(c, d);
printf ("a: %d, b: $d\n", a, b);

foo(c, &c);
printf ("a: %d, b: $d\n", a, b);

foo(&c, &d);
printf ("a: %d, b: $d\n", a, b);

foo (&b, d);
printf ("a: %d, b: $d\n", a, b);

return 0;

}

void foo (int* x, int** y) {
(%) ++;
(**y) ++

}

a) Given the function prototype for foo and the variable declarations and initializations within ma in, which are valid calls to
foo shown within main? TIP: determine the type of the argument being passed in the function call and determine if it
matches the signature of foo (the types of the arguments foo is expecting)

Cross out any invalid calls and the print statement after an invalid call.

b) Once you have eliminated the invalid function calls within main, trace the program with the remaining function calls?

Consider the following program.
#include <stdio.h>

void swap (int x, int y);
void swap ptrs(int* x, int* y);

int main(void) {
int a = 10;
int b = 20;

printf (“before swap - a: %d, b: %d\n”, a, b);
swap (a, b);
printf (Yafter swap - a: %d, b: %d\n”, a, b);

printf (“before swap ptrs - a: %d, b: %d\n”, a, b);
swap_ptrs(&a, &b);

printf (“after swap ptrs - a: %d, b: %d\n”, a, Db);
return 0;

}
void swap (int x, int y) {
int tmp = x;
X = y;
y = tmp;
printf (Yin swap - x: %d, y: %d\n”, x, y);

}

void swap ptrs(int* x, int* y) {

int tmp = *x;

*X = *y;

*y = tmp;

printf (“in swap ptrs - *x: %d, *y: %d\n”, *x, *y);

}

a) What is the output?

b) What is different between the 2 functions swap and swap ptrs?

