

Lesson Plan:

Midterm practice with Abstraction, 2-OneOf, Mutual Ref

Intended Learning Outcomes:

- Identifying Generative Recursion problems from description
- Difference between Generative and Structural Recursion
- Generative Recursion - establishing what "problem"/ "changing information"
- Template blending

Required Materials:

1) problem

Lesson Procedure		
Main Task 1 - Discussion	Resource(s)	Time
What makes this a gen rec problem - make them answer this question. Some helpful indicators... -No data defined to operate on -multiple possible next moves from any given cell		<5 mins
Main Task 2 - Establish the problem/next problems		
Do not let them write code yet!!		
Ask them to sketch out a picture of their solution like we did with triangle solitaire and in Sudoku (problems + next problems).		
If they don't know where to start ask them to: - label the axis of the maze (x,y values) - walk through the maze and identify what is changing as they walk through - do the values of the cells change? Does the position you are at in the maze change?		

$\left.\begin{array}{|l|l|l|}\hline \text { What they should have: } & & \\ \text {-a clear description of what the problem is: a position } & & \\ \text {-what it means to be in a solved position } \\ \text {-an example problem (position 0,0) with example next } & & \\ \text { problems (list) } & & \\ \begin{array}{l}\text { Before they move to code get them to write in words the } \\ \text { seps they follow to generate the next problems (positions). } \\ \text { You want to see enough detail that you understand their } \\ \text { approach. For example: }\end{array} & & \\ \text {-I create a list of 2 next positions } \\ \text {-I get rid of the ones outside the maze } \\ \text {-I get rid of the ones that are walls }\end{array}\right)$.

