

Lesson Plan:

Learn to decide when to design a data definition to solve a problem and what kind of data definition to design.

Intended Learning Outcomes:

- Develop understanding of when to include a data definition
- Develop understanding of the impact of a problem domain on a data definition and function design
- Develop understanding of compound data definitions

Required Materials:

1) Week 5 handout (2 problem versions)

Lesson Procedure		Time
	Resource(s)	5 mins
Class setup		
Split student into 5 groups of at least 3 students per group. Hand out one problem handout for each group to work on. 2 languages per group.		Week 3 handout - 2 problem versions
Main Task 1 - Solution Design		$15-20$ mins
Have groups work on a solution to their problem. Problem description does not explicitly instruct students to do a data definition (DD) but implicitly expects them to. - Let groups start and see if they do a DD - Don't let groups get too far into a function design without doing a DD - Keep track of how many groups did the DD with/without being told/reminded - Take a picture of each of the group's solutions		
Main Task 2 - Presentations		$25-30$
Get two groups to present their solutions (they should not know this ahead of time). Encourage audience to point out mistakes or differences compared to their solution.		mins

Read through the following problem and provide a full solution. Be prepared to present your solution to the class.

Problem:

```
A student at UBC has their academic performance monitored after each term.
Academic performance record for a student includes the student's name, their
term grade as a percentage and the number of credits the student was
registered in to a maximum of 18 credits.
For example, Annabella Simpson had an average percentage of 88 in her classes
last term, which were a total of 15 credits.
A student that has a term average of less than 50% is considered failed. If a
student has a failed but was enrolled in less than 12 credits, they are
permitted to continue their studies, otherwise they must discontinue/withdraw
from the university.
We need a function that will determine whether or not a student must
discontinue/withdraw.
```


Read through the following problem and provide a full solution. Be prepared to present your solution to the class.

Problem:

```
A student's standing can either be: not currently registered at the
university or they can be in Failed Standing, Academic Probation or Good
Standing. A Good Standing student is one who passes all their courses and
has a term average of at least 55% in those courses. Good Standing students
are represented by their previous term average in percent.
A UBC student cannot take classes if:
    -they have Failed Standing or are on Academic Probation and
    -they receive less than 55% average on courses in their current term
    -they are not registered at UBC
    -if they are in Good Standing but receive less than 50% average across
    all courses in their current term and they took at least 12 credits in
    that term
```

We need a function to decide if a student is able to take classes or not. The function should take a student's standing and their \% average on courses they took in their current term and the number of credits they took in their current term.

