5/8/17

Template for arbitrary arity

(define (fn-for-element e)
(local [(define (fn-for-element e)
(... (fn-for-loe (element-subs e))))
(define (fn-for-loe loe)
(cond [(empty? loe) (...)]
[else
(... (fn-for-element (first loe))
(fn-for-loe (rest loe)))]))]

(fn-for-element e)))

Template for arbitrary sized tree of boards

(define (solve bd)
(local [(define (solve--board bd)
(en-
(solve-lobd (board-subs bd))))
(define (solve-lobd lobd)
(cond [(empty? lobd) (...)]
[else

(--. (solve-board (first lobd))

(solve-lobd (rest lobd)))]))]

(solve-bd bd)))

Template for generative recursion

(define (solve p)
(local [(define (genrec-fn p)
(cond [(trivial? p) (trivial-answer p)]
[else
(--- P
(genrec-fn (next-problem p)))1))]

(genrec-fn p)))

(define (solve bd) (define (solve bd)

(local [(define (solve-bd bd) (local [(define (solve-bd bd)
(cond [(trivial? bd) (trivial-answer bd)]
[else
(... bd [
(solve-bd (next-problems bd)))]))] (solve-lobd (board-subs bd))))
(define (solve-lobd lobd)
(cond [(empty? lobd) (...)]
[else
(... (solve-bd (first lobd))
(solve-lobd (rest lobd)))]))

(solve-bd bd))) (solve-bd bd)))

(aetine (zotve b blended templates
(local [(define (solve-bd bd) p o
(cond [(trivial? bd) (trivial-answer bd)]
[else
(... bd
(solve-lobd (next-problems bd)))
(define (solve-lobd lobd)
(cond [(empty? lobd) (...)]
[else

((solve-bd (first lobd))

(solve-lobd (rest lobd)))]1))1))]

(solve-bd bd)))

with backtracking...

(cond [(trivial? bd) (trivial-answer bd)]

(local [(define (solve-bd bd)

[else

(--. bd

(solve-lobd (next-problems bd)))
(define (solve-lobd lobd)
(cond [(empty? lobd) false]
[else
(local [(define try (solve-bd (first lobd)))]
(if (not (false? try))

try
(solve-lobd (rest lobd)))))1))1)

(solve-bd bd)))

