
5/8/17

1

(define (fn-for-element e)

(local [(define (fn-for-element e)

(... (fn-for-loe (element-subs e))))

(define (fn-for-loe loe)

(cond [(empty? loe) (...)]

[else

(... (fn-for-element (first loe))

(fn-for-loe (rest loe)))]))]

(fn-for-element e)))

Template	
 for	
 arbitrary	
 arity
(define (solve bd)

(local [(define (solve--board bd)

(...

(solve-lobd (board-subs bd))))

(define (solve-lobd lobd)

(cond [(empty? lobd) (...)]

[else

(... (solve—board (first lobd))

(solve-lobd (rest lobd)))]))]

(solve-bd bd)))

Template	
 for	
 arbitrary	
 sized	
 tree	
 of	
 boards

(define (solve p)

(local [(define (genrec-fn p)

(cond [(trivial? p) (trivial-answer p)]

[else

(... p

(genrec-fn (next-problem p)))]))]

(genrec-fn p)))

Template	
 for	
 generative	
 recursion
(define (solve bd)

(local [(define (solve-bd bd)

(...

(solve-lobd (board-subs bd))))

(define (solve-lobd lobd)

(cond [(empty? lobd) (...)]

[else

(... (solve—bd (first lobd))

(solve-lobd (rest lobd)))]))]

(solve-bd bd)))

(define (solve bd)

(local [(define (solve-bd bd)

(cond [(trivial? bd) (trivial-answer bd)]

[else

(... bd

(solve-bd (next-problems bd)))]))]

(solve-bd bd)))

(define (solve bd)

(local [(define (solve-bd bd)

(cond [(trivial? bd) (trivial-answer bd)]

[else

(... bd

(solve-lobd (next-problems bd)))

(define (solve-lobd lobd)

(cond [(empty? lobd) (...)]

[else

(... (solve—bd (first lobd))

(solve-lobd (rest lobd)))]))]))]

(solve-bd bd)))

blended	
 templates…
(define (solve bd)

(local [(define (solve-bd bd)

(cond [(trivial? bd) (trivial-answer bd)]

[else

(... bd

(solve-lobd (next-problems bd)))

(define (solve-lobd lobd)

(cond [(empty? lobd) false]

[else

(local [(define try (solve—bd (first lobd)))]

(if (not (false? try))

try

(solve-lobd (rest lobd)))))]))])

(solve-bd bd)))

with	
 backtracking…

