Yellow highlighted portions are omitted from handout given to students and are filled in during lecture.

Expressions

Expression Values Operators
(+ 2 35) 2 35 +
(* 3.1 2.5) 3.1, 2.5 *
(+ (* 3 2.2) 7) 7, 6.6 *, +
(string-append “a” “b" “c") “a"”, “b", “c" string-append
(circle 20 “solid” “red”) 20, *“solid”, “red” | circle
(substring “abcd” 0 2) “abcd”, 0, 2 substring
(beside ﬁ) beside

Yellow highlighted portions are omitted from handout given to students and are filled in during lecture.

Calling Versus Defining a function

CALLING a function

DEFINING a function

(fn-name arg-1 arg-2)

(define (fn-name arg-name-1 arg-name-2)
(an expression using

arg-name-1 and arg-name-2))

(+ 3 3)

(circle 20 “solid” *“red”)

(define (bulb c)

(circle 20 “solid” c))

Yellow highlighted portions are omitted from handout given to students and are filled in during lecture.

Functions Versus Data,
Similar concept to define your own Data type

Functions
Use them... Define them...
CALL Already defined for us Define our own
by name, passing the expected BSL built-in/primitive using HtDF recipe
value(s) functions/operators
(+ 4 5) +*, /- (define (bulb c)
(* (+ 4 3) 5) string-append (circle 20 “solid” c))
(substring “Hi” 0 1) substring .
ositive? (define (pos? n)
(bulb “red”) P ; (> n 0))
(pos? -1) More in helpdesk...
(pos? (- 5 7))
Data Types
Use them... Define them...
In the signature of our function BSL built-in/primitive types Define our own
using HtDF recipe
;7 Natural -> Natural Number
Integer TeamName

Stri Numb S— Natural
Bé ring Number - ring Age
;; Number -> Boolean .

String

;; TeamName -> Boolean Boolean

;; Age -> Boolean More in helpdesk...

Yellow highlighted portions are omitted from handout given to students and are filled in during lecture.

Information Versus Data

=> represent

Information <- interpret Data
Problem Domain Program
Street lights
Red 0
Yellow 1
Green 2

Natural[0, 2]

Character health

1 life Natural
2 lives
10 lives Natural[1,10] - constrained
Limit? false
dead
Team name
String
Canucks
Raptors
Bluelays
Person age
02029 Natural[0,110]

105 200

Yellow highlighted portions are omitted from handout given to students and are filled in during lecture.

Domain Analysis — dropping spider

(0] Time
ticks

Time
ticks

Time
ticks

Off screen

Constant Information

Changing Information

Big Bang options

MTS

Spider image
Width screen
Height screen
Ctr x

Speed

Top
Bottom

Y coordinate of spider

On tick
To draw

Yellow highlighted portions are omitted from handout given to students and are filled in during lecture.

Domain Analysis — dropping spider continued...

0] Time Time click
ticks ticks X
0]
0]
Constant Information Changing Information Big Bang options
MTS Y coordinate of spider On tick
Spider image To draw
Width screen X coordinate of spider
Height screen On mouse
Ctr x
Speed
Top

Bottom

Yellow highlighted portions are omitted from handout given to students and are filled in during lecture.

Domain Analysis — butterfly change direction...

<0 Time Space Press
ticks Bar “s”
press
<0 0> 0]
* click
Constant Information Changing Information Big Bang options
MTS Y coordinate of butterfly On tick
Butterfly image X coordinate of butterfly To draw
Width screen Direction of butterfly On mouse
Height screen On key
Ctr x
Ctry
Speed

Yellow highlighted portions are omitted from handout given to students and are filled in during lecture.

ListOfNatural v Natural (atomic) v Natural (self-ref)

ListOfNatural Data Definition

Natural Data Definition

An arbitrary number of values

A single value that specifies how many times
to repeat something

ListOfNatural is one of:

- empty

; — (cons Natural ListOfNatural)

;; interp. a list of natural numbers
(define LON-MT empty)

(define LON-1 (cons 3 empty))

(define LON-2 (cons 3 (cons 4 empty)))

.
ris
° o
ris
.
4

;; Natural is one of:

iv -0

;7 - (addl Natural)

;; interp. a natural number
(define NO 0) ;0
(define N1 (addl NO)) ;1
(define N2 (addl N1)) ;2

(define (fn-for-lon lon)
(cond [(empty? lon) (...)]
[else
(... (first lon)
(fn-for-lon (rest lon n)))]1))

6
(define (fn-for-natural n)
(cond [(zero? n) (...)]
[else
(coo ml
(fn-for-natural (subl n)))]))

Produce a list one element longer, use cons:

1
Produce a natural one bigger, use add1:

(cons 6 LON-2) (addl N2) ==> 3
(cons 6 (cons 3 (cons 4 empty))) (addl 2) ==> 3
2

Produce a list one element shorter, use rest:

Produce a natural one smaller, use sub1:

(rest LON-2) (subl N2) ==>1
==> (cons 4 empty)

(subl 2) ==> 1
(rest (cons 3 (cons 4 empty)))
==> (cons 4 empty)

3

Access the first element in the list, use first:
(first LON-2) ==> 3

(first (cons 3 (cons 4 empty))) ==> 3

What is the first natural encountered in the countdown?

To operate on the remaining elements in the list, use NR:

(recursive-call (rest LON-2))

4
To operate on the remaining naturals, use NR:

(recursive-call (subl n))

Base-case (when the recursion stops) is:

when the list is empty...
(empty? lon)

5
Base-case (when the recursion stops) is:

when the Natural is O...
(zero? n)

Yellow highlighted portions are omitted from handout given to students and are filled in during lecture.

Functions

Use them...

Define them...

CALL
by name, passing the expected
value(s)

Already defined for us

BSL built-in/primitive
functions/operators

Define our own
using HtDF recipe

(+ 4 5)
(* (+ 4 3) 5)
(substring “Hi” 0 1)

(bulb “red”)

(pos? -1)
(pos? (- 5 7))

+, %, /-
string-append
substring
positive?

More in helpdesk...

(define (bulb c)
(circle 20 “solid” c))

(define (pos? n)
(>n 0))

(define (sum-to-n n)
(cond [(zero? n) 0]
[else
(+ n
(sum-to-n (subl n)))1]))

Data Types

Use them...

Define them...

In the signature of our function

BSL built-
in/primitive types

Define our own
using HtDD recipe

;; Natural -> Natural
;7 produce 2 * n
(define (double n)

(* n 2))

;; String Number ->
String

;; TeamName -> Boolean
;7 Age -> Boolean
(define S1
(make-student “Jim”

3.5))

(student-name S1)
;evaluates to “Jim”

(student-id S1)
;evaluates to 3.5

Student
produce

—-> Number
gpa of s as %

~e

~e ~eo
~e

Natural -> Natural
produce sum o number
0 to n inclusive

Number

Integer

Natural

String

Boolean

More in helpdesk...

;; TeamName is String

;; Age is Natural[0,110]

(define-struct student (name gpa))
;; Student is (make-student String
Number)

; Natural is one of:

; - 0

; — (addl Natural)

; interp. a natural number

.
14
.
14
.
14
.
14

Yellow highlighted portions are omitted from handout given to students and are filled in during lecture.

Abstract Functions —add them to concept model

Functions

Use them...

Define them...

CALL
by name, passing the expected
value(s)

Already defined for us
BSL built-in/primitive
functions/operators

Define our own
using HtDF recipe

(+ 4 5)
(* (+ 4 3) 5)
(substring “Hi” 0 1)

(bulb “red”)

(pos? -1)
(pos? (- 5 7))

(map sqgr (list 2 3 4))
= (list 4 9 16)

(foldr + 0
(list 2 3 4))
= 9

+, %, /-
string-append
substring
positive?

More in helpdesk...

map
filter
foldr
build-list
andmap
ormap

(define (bulb c)
(circle 20 “solid” c))

(define (pos? n)
(>n 0))

created from examples:
map-2
filter-2

created from template:
fold
fold-unit

